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Abstract
We investigate decoherence of a central quantum system uniformly coupled
to an XY spin-1/2 bath in a transverse field. Through explicitly calculating
the Loschmidt echo (LE) used to characterize decoherence quantitatively we
find that the anisotropy parameter γ sensitively affects the decoherence of the
central system when γ ∈ [0, 1]. Interestingly, the LE becomes unit under the
condition that the initial state of the environment is a product state. Although it
is difficult to control the environment to be product states in reality, our findings
may provide a new understanding of mechanism of the decoherence.

PACS numbers: 05.50.+q, 03.65.Ta, 03.65.Yz

1. Introduction

Coherence of a quantum state is very fragile because of the existence of its environmental
degrees of freedom coupled to it, which has become the major obstacle in constructing quantum
computer [1, 2]. To protect the quantum information, we generally use the quantum error
correction scheme which can correct the quantum errors to protect the encoded quantum states
[3–5]. We can also use the scheme to find the decoherence-free subspaces and some other
schemes to protect the quantum information [6, 7]. Generally we need several physical qubits
to realize one logic qubit in these schemes. It will be very interesting if we can find a quantum
systems in which the quantum states can be naturally protected.

On the other hand, many physicists took attention to the relationship among the concepts
of environment, decoherence and irreversibility; these investigations may provide new
perspective of how to overcome decoherence and renewed understanding for the crossover
between quantum and classical behaviour [8]. In the study of quantum-classical transition
in quantum chaos, the concept of Loschmidt echo (LE) [9] was introduced, we also employ
it to characterize the decoherence of a central system. With the development of quantum
information, entanglement was used to investigate the quantum phase transition (QPT) [11, 12].
Very recently Quan et al have found that the quantum critical behaviour of the environmental
system strongly affects its capability of enhancing the decay of the LE [13]. In this paper,
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we present a theoretical study of the behavior of the LE characterizing the decoherence
quantitatively by extending the Ising mode used in [13] to a more general XY model, and find
that the anisotropy parameter γ sensitively affects the decoherence of the central system when
γ ∈ [0, 1]. Interestingly, the LE becomes unit under the condition that the initial state of the
environment is a product state.

2. Derivation of the LE for a central system

Firstly, we analyse the XY model as a starting point, since it is exactly solvable and
presents a rich structure. The system-bath model can be described by the Hamiltonian
H = HS + HE + HSE, the central (two-state) system, characterized by the ground state |0〉
and the excited state |1〉, has a free Hamiltonian HS = we|1〉〈1| and is coupled to all spins
in the bath through the interaction HSE = −δ

∑
l |1〉〈1|σ z

l , where δ represents the coupling
constant. Our model differs from the model in [14] where the system only interacts with the
first spin in the bath. The chain in a transverse field has nearest-neighbour interactions with
Hamiltonian expressed by

HE = −
M∑

l=−M

(
1 + γ

2
σx

l σ x
l+1 +

1 − γ

2
σ

y

l σ
y

l+1 + λσ z
l

)
, (1)

where M = (N − 1)/2 for N odd, and the operators σα
l (α = x, y, z) are the usual Pauli

operators defined on the lth site of the lattice. The constants γ ∈ [0, +∞] and λ ∈ R represent
the anisotropy parameter in the next-neighbour spin–spin interaction and an external magnetic
field. The model defined by equation (1) has a rich structure [15], i.e., when the anisotropy
parameter γ is set to (0, 1], the model of equation (1) belongs to the Ising universality class
which has a critical point only at λc = 1; however, when γ = 0, it belongs to the XY

universality class and the critical region is λc ∈ (−1, 1).

We assume the central system to be prepared in a superposition state |�S〉 = α|0〉 + β|1〉,
thus the initial system-environment state can be written as �SE(0)〉 = (α|0〉 + β|1〉)|�E(0)〉.
From the evolved reduced density matrix of the system ρS(t) = TrE|�SE(t)〉〈�SE(t)|, we
obtain

ρS(t) = |α|2|0〉〈0| + αβ∗R(t)|0〉〈1| + α∗βR∗(t)|1〉〈0| + β2|1〉〈1|. (2)

Clearly on the basis of the eigenstates |0〉 and |1〉, the diagonal terms in equation (2) do not
evolve with time, and only the off-diagonal terms will be modulated by the decoherence factor
R(t), which is the overlap between two states of the environment obtained by evolving the same
initial state |�E(0)〉 driven by two different effective Hamiltonians H0 and H1. As discussed
in [13], for the model (1) we have Hj = −∑M

l=−M

[ 1+γ

2 σx
l σ x

l+1 + 1−γ

2 σ
y

l σ
y

l+1 + (λ + jδ)σ z
l

]
with j = 0 or 1. R(t) can be defined as

R(t) = 〈�E(0)| eitH0 e−itH1 |�E(0)〉, (3)

while the LE is determined from L(t) = |R(t)|2, which is also called fidelity. If the initial
surrounding environment is prepared in the ground state of H0, i.e., |	0〉, equation (3) will
reduce to a simpler form

R(t) = 〈	0| e−itH1 |	0〉, (4)

where an irrelevant phase factor is removed.



Decoherence of a central quantum system coupled to an XY spin chain 2457

Next we will deduce the detailed expression of R(t) for model (1). In the standard way,
the two Hamiltonians Hj can be diagonalized in terms of a suitable set of fermionic creation
and annihilation operators µ

(j)

k as

Hj =
M∑

k=1

ε
(j)

k

[
µ

(j)†
k µ

(j)

k − 1
]
. (5)

When getting the equation above, we have applied to each spin a rotation of φ around the
z direction Hj (φ) = g(φ)Hj g

†(φ) with g(φ) = ∏M
l=−M exp

(
iσ z

l φ/2
)
, the Jordan–Wigner

transformation mapping the spins to one-dimensional spinless fermions with creation and
annihilation operators al and a

†
l via the relation al = (∏

i<l σ
z
i

)(
σx

l + iσy

l

)/
2, and the Fourier

transformation of the fermionic operators described by ck = (1/
√

N)
∑

l al exp(−i2πlk/N).
The energy spectrum in equation (5) is

ε
(j)

k =
√[

cos

(
2πk

N

)
− (λ + jδ)

]2

+ γ 2 sin2

(
2πk

N

)
, (6)

and through a Bogliubov transformation the operators appearing in the Hamiltonians Hj we
have

µ
(j)

k = ck cos

[
θ

(j)

k

2

]
− ic†−k e2iφ sin

[
θ

(j)

k

2

]
, (7)

where the angles θ
(j)

k is the Bogliubov coefficients satisfying the following equation:

cos
[
θ

(j)

k

] = cos
(

2πk
N

) − (λ + jδ)

ε
(j)

k

. (8)

It is easy to check that the spinless Fermion operators µ
(j)

±k satisfy

µ
(0)
±k = µ

(1)
±k cos(θk) ∓ iµ(1)†

∓k e2iφ sin(θk), (9)

where θk = [
θ

(0)
k − θ

(1)
k

]/
2.

According to equation (9), the ground state of H0 can be expressed as

|	0〉XY =
M∏

k=1

[cos(θk)|0〉k|0〉−k + i e2iφ sin(θk)|1〉k|1〉−k], (10)

for any operators µ
(0)
±k we have µ

(0)
±k|�0〉 = 0. |0〉k and |1〉k are the vacuum and single excitation

of the kth mode, µ
(1)
k , respectively.

As expected that the ground state of H0 is taken as the initial surrounding environment
state, substituting equation (10) into equation (4) we obtain the decoherence factor

R(t) =
M∏

k=1

Rk(t) =
M∏

k=1

[
sin2(θk) + cos2(θk) ei2ε

(1)
k t

]
, (11)

so we can express the LE as

L(t) = |R(t)|2 =
M∏

k=1

[
1 − sin2(2θk) sin2

(
ε

(1)
k t

)]
. (12)

The term Rk(t) ≡ sin2(θk) + cos2(θk) ei2ε
(1)
k t is a decoherence factor for the kth mode, and

its modulus square is always not larger than one. It is interesting to mention that the Berry
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Figure 1. Three-dimensional diagram of L(t) as a function of t and λ with N = 201 and δ = 0.1.
With decreasing γ from 1.0 to 0.1, (a)–(c) show that the range of λ where the decay of L(t) is
enhanced increases. Part (d) shows that when γ = 0.0, L(t) is unit always, regardless of what N,
λ and δ are.

(This figure is in colour only in the electronic version)

phase of the ground state in the XY model is of sum form for each mode [16, 17], while this
decoherence factor (11) is of multiplying form for each mode. Furthermore, equation (11)
is analogous to that for non-interacting spin environments [19, 18, 20] and Cucchietti
generalized Quan’s results [21].

To better understand the LE (12), we plot it as a function of t and λ in figure 1, and
as a function of only t in figure 2. For simplicity, we only set N = 201 and δ = 0.1. It
is demonstrated that the decay of L(t) is enhanced at the critical point of quantum phase
transition λc = 1 in figure 1(a), since the XY model with γ = 1 corresponds to the Ising
model. There exists a deep valley in the around the line λ = 0.9, which is the same results
as [13]. However, for the general XY model where γ is adjusted in (0, 1), we find that the
decay of L(t) is enhanced in a different degree in the range λ ∈ (0, 1). When γ = 0.4,
the amplitudes of L(t) in figure 1(b) is smaller than those corresponding to figure 1(a) and
the range of λ resulting in L(t) = 0 increases. When we continue to decrease γ to 0.1 in
figure 1(c), it is seen that L(t) nearly approaches zero in the range λ ∈ (0, 1), where the central
system transits from a pure state to a mixed state. So we can conclude that for a smaller γ , the
critical point of quantum phase transition is the transition point of whether the decay of L(t)

is enhanced or not.
Comparing with the results in [13], for the general XY model, we also see that L(t) decays

and revives as time increases in figures 2(e) and (f ). This may serve as a witness of QPT. At
the same time, if we appropriately adjust the parameters N, δ and λ as shown in figures 2(e) and
(f ), it is found that the two plots of L(t) with the same γ have the identical profile, indicating
that the period of the revival of L(t) is proportional to the size of the surrounding system in
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Figure 2. L(t) as a function of t. Parts (e) and (f ) show that with decreasing γ the quasiperiod of
L(t) increases, and it is proportional to the size of the surrounding system. The quasiperiod stems
from quantum phase transition at λc = λ + δ = 1. Part (g) shows that with decreasing γ the decay
of L(t) is enhanced faster. Part (h) shows that for some parameters λ (away from critical point
λc = 1) L(t) becomes chaotic, which is due to the competition between the two phases separated
by λc = 1.

the case of finite N. Figures 2(g) and (h) reflect that the decreasing γ leads to fast decaying of
the L(t), which complies with the situation described by figures 1(a)–(c). In quantum chaos
[9] the sensitivity of perturbations in the Hamiltonian system can be understood according to
the LE [22]. Here, for some parameters shown in figures 2(g) and (h), L(t) becomes chaotic,
which is due to the competition between the two phases separated by λc = 1.

3. Special cases of the LE being unit

Interestingly, we find that L(t) does not vary with time in the XX model with γ = 0, i.e., the
coherence of the central spin will not be affected by the special environment. The reasons are
in the following. From equations (6)–(8), we see that

lim
γ→0

cos
[
θ

(j)

k

] = ±1, (13)

which directly results in that the ground state of H0 no longer lies in the two-dimensional
Hilbert space spanned by |0〉k|0〉−k and |1〉k|1〉−k , but only one of them like equation (14). To
obtain the explicit form of the ground state, we let cos(2πk1/N) = λ and cos(2πk0/N) = λ+δ

in equation (8), and from them know that k0 < k1. Considering equations (8–10), we can
express the ground state

|	0〉XX =
k0∏

k=1

|0〉k|0〉−k

M∏
k=k0+1

(ie2iφ)|1〉k|1〉−k, (14)
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since cos(θk) = 1 in equation (10) when k < k0, and µ
(0)
k = µ

(1)
k (k < k0) or −µ

(1)
k (k > k0).

Note that the state in equation (14) is a product state, which stems from γ = 0. Substituting
equation (14) into equation (4), we have

L(t) = lim
γ→0

|R(t)|2 = 1, (15)

which means that L(t), initial equal to 1, will not decay at all, and the central system
preserves its initial coherence except for an additional phase factor in one of eigenstates of
the central system. For our model with the central system surrounded by the XX spin-1/2
bath, note that the purity [13, 18] P = TrS

(
ρ2

S

)
is defined to describe decoherence, it is

P = 1 − 2|αβ|2[1 − L(t)] = 1 also, independent of the central system and this special
environment. What is more, result (15) is regardless of the number N of the lattice and what
the external magnetic field λ is, it seems to be counterintuitive, but it is indeed the case. We
can see in figure 1(d). At the same time, we emphasize that the non-decay of the LE in this
case is nontrivial because of the difference between H0 and H1.

The result can be better understood as follows. Evolving from the initial system-
environment state |�SE(0)〉 = (α|0〉 + β|1〉)|�E(0)〉, which is not entangled, it becomes
|�SE(t)〉 = α|0〉|	0(t)〉 + β|1〉|	1(t)〉 at an arbitrary t, where |	0(t)〉 and |	1(t)〉 are driven
by the Hamiltonians H0 and H1, respectively. It is known that H0 and H1 are different;
however, it happens that the anisotropy parameter γ = 0 leads to their same evolution,
resulting in 〈	0(t)|	1(t)〉 = exp(iϕ). The real time-dependent ϕ denotes an additional phase
factor.

Finally, we assume that the XX model environment to be initially prepared in an arbitrary
excited state with γ = 0. An n-particle state has the form µ

(0)†
k1

µ
(0)†
k2

· · · µ(0)†
kn

|	0〉XX, with all
the ki distinct, i.e., it is

|	n〉XX =
kn∏

k′=k1

|1〉k′ |0〉−k′

k0∏
k=1

|0〉k|0〉−k

M∏
k=k0+1

(ie2iφ)|1〉k|1〉−k, (16)

where k �= k′. Substituting equation (16) into equation (4), we find that the LE is L(t) = 1 also,
which implies that the partial excited states of the environment does not induce decoherence
to the central system. However, if the environment is initially prepared in a thermal state, the
LE is no longer equal to unit, but will decay with time. Of particular interest is the case in
which the XY model lies initially in an excited state. The m-particle state can be written as

|	m〉XY =
km∏

k′=k1

|1〉k′ |0〉−k′

M∏
k=1,k �=k′

[cos(θk)|0〉k|0〉−k + ie2iφ sin(θk)|1〉k|1〉−k]. (17)

After calculation by substituting equation (17) into equation (4) the LE is derived as
L(t) = ∏M

k=1

[
1 − sin2(2θk) sin2

(
ε

(1)
k t

)]
with k �= k′. It can be seen that (i) the excited

states
∏km

k′=k1
|1〉k′ |0〉−k′ have no any contributions to modulating the LE; (ii) if all the particles

are excited, i.e., |	m〉XY = ∏M
k=1 |1〉k|0〉−k , which is assumed to be the initial state of the bath,

the LE of the central system is unit also. Note that if the initial state of the XY model bath is
thermal, the LE of the central system will decay with time. The vanishing decoherence may
arise in view of the non-interacting environments in [19]: if we let all spins lie initially in
either up or down, the decoherence factor will be unit as well. It is worthwhile for us to find
out its physical nature.
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4. Conclusions

In summary, we investigate the decoherence process of a central quantum system uniformly
coupled to an XY spin-1/2 bath in a transverse field. Through explicitly calculating the
LE used to characterize decoherence quantitatively we find that the anisotropy parameter γ

sensitively affects the decoherence of the central system when γ ∈ [0, 1]. Interestingly, the
LE becomes unit under the condition that the initial state of the spin chain environment is a
product state: the initial state of the XX spin-1/2 bath lies either in the ground state or in the
state that the partial particles are excited, or in the state that all particles are excited. Although
it is difficult to make the initial state of the spin chain environment be in a product state at zero
temperature, in a theoretical-investigation sense, our findings may shed light on understanding
of the mechanism of the decoherence.
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